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The Knowledge Aided Sensor Signal Processing and Expert Reasoning (KASSPER) Program is a 
Defense Advanced Research Projects Agency (DARPA) program which has the goal of improving 
the performance of Ground Moving Target Indicator (GMTI) radar systems by incorporating 
external sources of knowledge into the signal processing chain. The KASSPER Real-Time Signal 
Processor Testbed and its associated Signal Processing Architecture is a prototype radar system 
scheduling and signal processing framework that has been developed at Massachusetts Institute of 
Technology Lincoln Laboratory (MIT LL).  
 
A typical scenario in which KASSPER processing could be useful is depicted in Fig. 1. Note that 
the GMTI clutter environment is heterogeneous (trees, open areas, an urban area, etc). By taking 
advantage of prior knowledge about this environment (i.e. locations of roads, terrain contours, 
types of ground cover, etc.), processing algorithms can have an opportunity to improve their 
performance by avoiding invalid assumptions about the environment.  
 
A top level diagram of the KASSPER architecture is shown in Fig. 2. The components of this 
architecture that are different from a conventional radar signal processor are the knowledge 
database, knowledge cache, and the look-ahead scheduler. 
  
  
 
Fig. 1. A representative KASSPER problem. 
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– STAP Weight Application
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Knowledge-Aided Sensor Signal Processing 
and Expert Reasoning (KASSPER)

MIT LL Program Objectives
Develop systems-oriented
approach to revolutionize
ISR signal processing for
operation in difficult
environments
• Develop and evaluate high-

performance integrated radar 
system/algorithm 
approaches

• Incorporate knowledge into radar 
resource scheduling, signal, and 
data processing functions

• Define, develop, and demonstrate 
appropriate real-time signal 
processing architecture 

SAR Spot
GMTI Track

Ground Moving Target 
Indication (GMTI) Search

Synthetic Aperture 
Radar (SAR) Stripmap

MIT Lincoln Laboratory
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Representative KASSPER Problem 

Launcher

ISR Platform
with

KASSPER
System

Convoy A

Convoy B

• Radar System Challenges
– Heterogenous clutter environments
– Clutter discretes
– Dense target environments

• Results in decreased system 
performance (e.g. higher Minimum
Detectable Velocity, Probability of
Detection vs. False Alarm Rate)

• KASSPER System Characteristics
– Knowledge Processing

– Knowledge-enabled Algorithms
– Knowledge Repository

– Multi-function Radar
– Multiple Waveforms + Algorithms
– Intelligent Scheduling

• Knowledge Types
– Mission Goals
– Static Knowledge
– Dynamic Knowledge

.
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– STAP Weight Application
– Knowledge Database Pre-processing
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High Level KASSPER Architecture

Target
Detects

Sensor Data
Intertial Navigation System (INS),
Global Positioning System (GPS),
etc.

Knowledge Database

Static (i.e. “Off-line”) Knowledge Source

Signal
Processing

Look-ahead
Scheduler

Data
Processor

(Tracker, etc)

Track
Data

e.g. Mission
Knowledge

e.g. Terrain
Knowledge

Operator
External System

e.g. Real-time
Intelligence
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Baseline Signal Processing Chain 

GMTI Signal Processing
GMTI Functional Pipeline 

Filtering
Task

Beam-
former
Task

Filter
Task

Detect
Task

Data
Output
Task

Target
DetectsRaw

Sensor
Data Data

Input
Task

Look-ahead
Scheduler

Data
Processor

(Tracker, etc)

Knowledge Database

INS, GPS, etc

Baseline data cube sizes:
• 3 channels x 131 pulses x 1676 range cells
• 12 channels x 35 pulses x 1666 range cells

Knowledge Processing
Track
Data

.
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KASSPER Real-Time Processor Testbed

Processing Architecture Software Architecture 

Application Application Application

Parallel Vector Library (PVL)
Kernel Kernel Kernel

• Rapid Prototyping
• High Level Abstractions
• Scalability
• Productivity
• Rapid Algorithm Insertion

Results

Sensor DataINS, GPS, etc

Knowledge Database

Off-line Knowledge Source (DTED, VMAP, etc)

Signal
Processing

Look-ahead
Scheduler

Data
Processor

(Tracker, etc)

Sensor Data
Storage

“Knowledge”
Storage

Surrogate for actual
radar system

KASSPER Signal Processor

120 PPC G4 CPUs @ 500 MHZ 
4 GFlop/Sec/CPU = 480 GFlop/Sec
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KASSPER Knowledge-Aided
Processing Benefits
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• KASSPER Program Overview
• KASSPER Processor Testbed
• Computational Kernel Benchmarks

– STAP Weight Application
– Knowledge Database Pre-processing

• Summary
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Space Time Adaptive Processing (STAP)

?
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…

STAP
Weights (W)

Training Data (A) Solve for  weights
( R=AHA, W=R-1v)

Range cell
of interest

X
Range cell/w
suppressed
clutterSteering Vector (v)

• Training samples are chosen to form an estimate of the 
background

• Multiplying the STAP Weights by the data at a range cell 
suppresses features that are similar to the features that 
were in the training data 
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Space Time Adaptive Processing (STAP)

?

sample
1

sample
2

sample
N-1

sample
N

…

STAP
Weights (W)

Training Data (A) Solve for  weights
( R=AHA, W=R-1v)

Range cell
of interest

Steering Vector (v)

Breaks
Assumptions

X
Range cell/w
suppressed
clutter

• Simple training selection approaches may lead to degraded 
performance since the clutter in training set may not match
the clutter in the range cell of interest 
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Space Time Adaptive Processing (STAP)

?

sample
1

sample
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sample
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sample
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…
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Training Data (A) Solve for  weights
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• Use of terrain knowledge to select training samples can 
mitigate the degradation 
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STAP Weights and Knowledge

• STAP weights computed from training samples within a 
training region

• To improve processor efficiency, many designs apply 
weights across a swath of range (i.e. matrix multiply)

• With knowledge enhanced STAP techniques, MUST assume 
that adjacent range cells will not use the same weights (i.e. 
weight selection/computation is data dependant)

STAP Output STAP Output

Weights

Training

*

Training

* Weights

select
1 of N 

External
data

STAP Input STAP Input

Equivalent to Matrix Multiply 
since same weights

are used for all columns

Cannot use Matrix Multiply
since the weights applied to 

each column are data dependant
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Benchmark Algorithm Overview

Benchmark Reference Algorithm (Single Weight Multiply)

STAP Output Weights STAP Input= X

Benchmark Data Dependant Algorithm (Multiple Weight Multiply)

STAP Input

STAP Output

Training Set

*

STAP
Weights N pre-computed

Weight vectors

Weights applied to a column
selected sequentially modulo N

Benchmark’s goal is to determine the achievable performance
compared to the well-known matrix multiply algorithm.
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Test Case Overview

XJ K

LK

Data Set     J x K x L

Single Weight Multiply

X
L

K

K

J

N

Multiple Weight Multiply

• Complex Data
– Single precision 

interleaved
• Two test architectures

– PowerPC G4 (500Mhz)
– Pentium 4 (2.8Ghz)

N = # of weight matrices = 10 J 
an

d 
K

 d
im

en
si

on
 le

ng
th

L dimension length
• Four test cases

– Single weight multiply/wo cache flush
– Single weight multiply/w cache flush
– Multiple weight multiply/wo cache flush
– Multiple weight multiply/w cache flush
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Data Set #1 - LxLxL
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Data Set #2 – 32x32xL
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Data Set #3 – 20x20xL
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Data Set #4 – 12x12xL
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Data Set #5 – 8x8xL
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Performance Observations

• Data dependent processing cannot be optimized as well
– Branching prevents compilers from “unrolling” loops to 

improve pipelining
• Data dependent processing does not allow efficient “re-

use” of already loaded data
– Algorithms cannot make simplifying assumptions about 

already having the data that is needed.
• Data dependent processing does not vectorize

– Using either Altivec or SSE is very difficult since data 
movement patterns become data dependant

• Higher memory bandwidth reduces cache impact
• Actual performance scales roughly with clock rate rather 

than theoretical peak performance

Approx 3x to 10x performance degradation,
Processing efficiency of 2-5% depending on CPU architecture

.
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• KASSPER Program Overview
• KASSPER Processor Testbed
• Computational Kernel Benchmarks

– STAP Weight Application
– Knowledge Database Pre-processing

• Summary
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Knowledge Database Architecture

Look-ahead
Scheduler

Signal
Processing

Results

GPS, INS,
User Inputs,
etc

Sensor
Data

Downstream
Processing

(Tracker, etc)

Command

Load/
Store/
Send

Knowledge
Manager

Knowledge
Cache

Knowledge
Processing

Knowledge
Store

New Knowledge

Stored Data

Send

New Knowledge (Time Critial Targets, etc)

Stored Data

StoreLoad Raw a priori
Raster & Vector

Knowledge
(DTED,VMAP,etc)

Off-line
Knowledge
Reformatter

Stored Data

Lookup

Update

Off-line 

Pre-Processing
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Database
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Static Knowledge

• Vector Data
– Each feature represented by a set of point 

locations:
 Points - longitude and latitude (i.e. towers, etc)
 Lines - list of points, first and last points are 

not connected (i.e. roads, rail, etc)
 Areas - list of points, first and last point are 

connected (i.e. forest, urban, etc)
– Standard Vector Formats

 Vector Smart Map (VMAP)

• Matrix Data
– Rectangular arrays of evenly spaced data 

points
– Standard Raster Formats 

 Digital Terrain Elevation Data (DTED)

Trees (area)

Roads (line)

DTED
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Terrain Interpolation

Geographic PositionSampled Terrain Height
& Type data Data

Earth Radius

Terain
Height

Slant
Range

N

Converting from radar to geographic coordinates
requires iterative refinement of estimate
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Terrain Interpolation
Performance Results

CPU Type Time per interpolation Processing Rate
P4 2.8 1.27uSec/interpolation 144MFlop/sec (1.2%)
G4 500 3.97uSec/interpolation 46MFlop/sec (2.3%)

• Data dependent processing does not vectorize
– Using either Altivec or SSE is very difficult

• Data dependent processing cannot be optimized as well
– Compilers cannot “unroll” loops to improve pipelining

• Data dependent processing does not allow efficient “re-
use” of already loaded data
– Algorithms cannot make simplifying assumptions about 

already having the data that is needed

Processing efficiency of 1-3% depending on CPU architecture

.
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Outline

• KASSPER Program Overview
• KASSPER Processor Testbed
• Computational Kernel Benchmarks

– STAP Weight Application
– Knowledge Database Pre-processing

• Summary
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Summary

• Observations
– The use of knowledge processing provides a significant 

system performance improvement
– Compared to traditional signal processing algorithms, the 

implementation of knowledge enabled algorithms can result 
in a factor of 4 or 5 lower CPU efficiency (as low as 1%-5%)

– Next-generation systems that employ cognitive algorithms 
are likely to have similar performance issues

• Important Research Directions
– Heterogeneous processors (i.e. a mix of COTS CPUs, FPGAs, 

GPUs, etc) can improve efficiency by better matching 
hardware to the individual problems being solved. For what 
class of systems is the current technology adequate?

– Are emerging architectures for cognitive information 
processing needed (e.g. Polymorphous Computing 
Architecture – PCA, Application Specific Instruction set 
Processors - ASIPs)?
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